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Abstract: Physical activity, especially when performed at moderate or vigorous intensity,
has short- and long-term health benefits, but measurement of free-living physical activity is
challenging. Accelerometers are popular tools to assess physical activity, although accuracy
of conventional accelerometer analysis methods is suboptimal. This study developed and
tested statistical learning models for assessing activity intensity from body-worn accelerom-
eters. Twenty-eight adults performed 10-21 activities of daily living in two visits while wear-
ing four accelerometers (right hip, right ankle, both wrists). Accelerometer placement is of
crucial practical concern and this paper addresses this issue. Boosting, bagging, random for-
est and decision tree models were created for each accelerometer and for two-, three-, and
four-accelerometer combinations to predict activity intensity. Research staff observations of
activity intensity served as the criterion. Point estimates of error for the ankle accelerometer
were 2.2-4.7 percentage points lower than other single-accelerometer placements, and the
left wrist-ankle combination had errors 0.8-5.8 percentage points lower than other two-
accelerometer combinations. Decision trees had poorer accuracy than the other models.
Using an accelerometer worn on the lower limb, by itself or in combination with an upper-
limb accelerometer, appears to offer optimal accuracy for activity intensity measurement.
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1 Introduction

Participation in moderate or vigorous intensity physical activity (MVPA) has long been rec-
ognized as an important, modifiable risk factor in the development of cardiovascular and a
host of other chronic diseases in adults of all ages (Pate et al., 1995). More recently, there
has been an emergence of evidence implicating sedentary behavior (SB), defined as seated
or lying activities requiring low energy expenditure, as a possible independent, modifiable
risk factor for health (Ekelund et al., 2016). Given the mounting evidence that both MVPA
and SB influence health, in 2018 the US Department of Health and Human Services up-
dated its original 2008 guidelines, for the first time addressing participation in both MVPA
and SB (Piercy et al., 2018). However, the guidelines for SB do not give specific time rec-
ommendations, focusing instead on reducing SB and replacing it with light-, moderate-,
or vigorous-intensity activity. Additionally, it is speculated that participation in MVPA may
reduce or eliminate the chronic disease risks associated with spending high amounts of time
spent in SBs, although this is still not fully understood or accepted (Ekelund et al., 2016).
Contributing to the lack of consensus on the level of contribution of MVPA and SB to health
is the shortage of accurate, objective tools capable of measuring both of these behaviors in
free-living settings.

In order to determine which activities contribute toward MVPA and SB recommenda-
tions, activities are typically divided into intensity levels (sedentary, light, moderate, vig-
orous) according to body position and energy expenditure required for the task. Seated or
lying activities requiring ≤ 1.5 times the resting energy expenditure level (i.e., 1.5 metabolic
equivalents or METS) are defined as SBs (Tremblay et al., 2017), and activities eliciting 1.6-
2.9, 3.0-5.9, and ≥ 6.0 METs are light, moderate, and vigorous intensities, respectively.
Therefore, when assessing MVPA and SB, it is possible to do so by 1) first assessing the
energy expenditure required of activities (without determining the types of activities per-
formed) and translating these to activity intensities, 2) assessing the activity types being
performed and using a tool such as the Compendium of Physical Activities (Ainsworth et al.,
2011) to assign energy expenditures and intensities to each activity type, or 3) assessing
activity intensity directly without determining energy cost or activity types performed.

Accelerometer-based monitoring devices (hereafter referred to as accelerometers) are
increasingly used in large scale studies as a means of measuring MVPA and SB and have
recently been recommended as the preferred method for assessment of physical activity
in populations such as those undergoing cardiac rehabilitation (Kaminsky et al., 2016).
Traditionally, accelerometers were worn on the hip to capture vertical movement of the
trunk. Due to battery life and memory limitations of early accelerometers, proprietary and
manufacturer-specific “activity counts” were derived from the accelerometer data in 1-60
second intervals (epochs), and cut-points were developed to determine the intensity of ac-
tivities being performed in a given interval (John and Freedson, 2012). While activity counts
and cut-points showed high accuracy for assessing physical activity intensity for hip-worn
monitors during ambulatory activities (Freedson et al., 1998), the relationship between ac-
tivity counts and activity intensity is poorly defined for non-ambulatory activities, resulting
in cut-points being relevant only to the population and types of activities for which the
cut-points were validated. Thus, for development of modeling approaches that work well
in a free-living context, inclusion of a variety of ambulatory and non-ambulatory activities
appears necessary.
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Technological improvements of accelerometers (device miniaturization, battery/memory
improvements) have been accompanied by more advanced analytic methods for determin-
ing physical activity and SB. Monitors worn on alternate body locations have allowed for
increased compliance (e.g., wrist; Troiano et al. (2014)) and accuracy (e.g., ankle placement
for measuring steps; (Toth et al., 2018)), and raw data capture has allowed for improved
assessment of physical activity and SB. A recent review by Farrahi et al. (2019) found that
most modeling methods for raw accelerometer data have been developed to assess either
energy expenditure or activity type to then determine time spent in physical activity inten-
sities. However, it is also possible to bypass these and assess activity intensity directly by
treating each activity intensity as if it is a distinct activity type.

There are two advantages to assessing activity intensity directly rather than assessing
energy expenditure or activity type first and then correspondingly deriving activity intensity.
First, most modeling methods which assess energy expenditure have high error rates (e.g.,
root mean square error of 1-2 METs) and show “bias toward the mean”, where the devel-
oped models overestimate the energy cost of low-intensity activities and underestimate the
energy cost of high-intensity activities (Montoye et al., 2015; Staudenmayer et al., 2015).
This generally leads to underestimation of time spent in SBs and vigorous-intensity activities
and overestimation of time spent in light- and moderate-intensity activities. Second, predic-
tion of activity type followed by activity intensity is problematic because it is not possible to
develop a model to correctly classify all activity types in a free-living setting. Additionally,
attempts made by recent work to classify activity types into broad categories based on sim-
ilar activity patterns (Sasaki et al., 2016; Kerr et al., 2016) result in collapsing activities of
different intensities into the same category, which is problematic for assessing adherence to
physical activity recommendations.

Despite it being much more common to assess energy expenditure or activity type, there
are several recent studies which have used accelerometers and machine learning to assess
activity intensity directly. In one, we developed artificial neural network machine learning
models to predict activity intensity as a three-class variable (sedentary, light, MVPA) from ac-
celerometers located on the wrists, thigh, and hip (Montoye et al., 2016). Overall, the thigh
accelerometer placement was found to have superior accuracy to other placements, with
the left wrist providing the second highest accuracy. Limitations to this study were that only
one type of machine learning model and one set of input features was used, a leave-one-out
approach was used (which tends to lead to overestimation of device accuracy), MVPA was
not split into moderate and vigorous intensities, and no multi-accelerometer combinations
were assessed. A follow-up study by the same group improved these limitations, using a left-
wrist worn accelerometer to assess activity intensity as a four-class variable (sedentary, light,
moderate, vigorous) using six different feature sets, six different machine learning models,
and using a distinctly independent sample for cross validation of the models (Montoye et al.,
2018). Their results indicated that the random forest machine learning model coupled with
a feature set comprising time-domain features (e.g., mean, standard deviation, percentiles
of acceleration signal) performed optimally for determining activity intensity. Limitations to
the study included no comparison of activity monitor placements or combinations.

The present study extends findings from the previous two studies in assessing activity
type. Our study aim was to offer a unique comparison of the accuracy of four machine learn-
ing algorithms coupled with accelerometers worn on the wrists, hip, and ankle (along with
combinations of these placements) to assess activity intensity as a two-class (MVPA or not)
and as a four-class variable (sedentary, light, moderate, vigorous) using an independent-

J Biomed Analytics, Vol. 3 No. 1 (2020), pp. 27–50



30 Lazar et al.

sample cross-validation approach. The four machine learning algorithms used were deci-
sion tree, bagging, random forest, and boosting. A secondary study aim was to assess the
effect of the demographic variables sex, body mass index (BMI), and age on accuracy of the
developed machine learning models.

2 Methods

2.1 Participants

Thirty healthy adults (n=15 female) aged 18-79 without orthopedic limitations were re-
cruited for this study. In order to increase variability in age and fitness level, 10 adults (n=5
female) were chosen from each of three age categories: 18-39, 40-59, and 60-79 years. Only
participants had valid data 168 to be included in the study; participant demographics for
those included in 169 the study can be found in Table 1. To be eligible for the study, par-
ticipants had be able to perform self-paced jogging for a minimum of two minutes; in this
way, all participants could theoretically perform all activities included in the study. Prior
to participation, all participants had study details explained both verbally and in writing,
and all gave written informed consent. Study procedures were approved by the Ball State
University Institutional Review Board.

2.2 Equipment

A total of four ActiGraph GT9X Link accelerometers (ActiGraph Corp., Pensacola, FL, USA)
were worn during this study. These accelerometers were worn on the dorsal aspect of the
left and right wrists, over the right hip at the level of the anterior axillary line (secured
using an elastic belt), and on the lateral aspect of the right ankle. All monitors were time-
synchronized at the beginning of each visit and were set to record raw, triaxial accelerometer
data at a sampling rate of 60 Hz. The display screen on the accelerometers was disabled; in
this way, no feedback was available to participants from the monitors.

2.3 Protocol

Participants reported to the Clinical Exercise Physiology Laboratory at Ball State University
for two visits, each of which took approximately two hours. Participants were instructed to
arrive having not performed vigorous-intensity physical activity and not having consumed
stimulants (e.g., caffeine, nicotine) or caloric food or beverages within the previous three
hours. Height and weight were measured according to standardized procedures. Partici-
pants were fitted with all accelerometers as described above, and instructions were given
for performance of activities for each visit.

2.3.1 Visit 1: Structured Setting

Visit 1 was designed to be highly structured, with research staff controlling many aspects of
the activities. For this visit, research staff selected 11 activities (from a set of 21 possible
activities) that participants were to perform within the laboratory setting. Activities were
selected by the research staff in a randomized manner so that all activities within a cate-
gory were performed by roughly the same number of participants. We chose these types
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of activities to represent an array of activities adults might perform in a normal day. Every
participant began this visit by lying supine on a padded table for 10 minutes. Afterward, we
randomly assigned two additional sedentary activities, four household/chore activities, and
four ambulatory/exercise activities for 5 minutes each. The activity order was meant to gen-
erally increase activity intensity throughout the visit. For the sedentary and lifestyle/chore
activities, participants were instructed to perform these activities as similarly as in their
everyday lives. For the ambulatory/exercise activities, participants self-selected the activity
speed/intensity but were required to remain at a consistent speed/intensity for the entire
activity. At the end of each activity, participants were able to take 1-2 minutes of rest before
starting the next activity. Sedentary activities included reading, using a computer, watching
television, writing, and playing cards; lifestyle/chore activities included standing, dusting,
making a bed, folding laundry, sweeping, vacuuming, simulated gardening, and picking up
items from the floor; ambulatory/exercise activities included slow and fast overground walk-
ing, self-paced treadmill walking, overground jogging, treadmill jogging, stationary cycling,
and ascending/descending stairs. This structure rarely resulted in activities being performed
more than once during the approximately 80 minute visit. Two researchers recorded activ-
ity start/stop and intensity of activities throughout each visit to ensure accurate criterion
data were captured. Upon activity transitions, researchers discussed and came to agreement
on activity intensity in real time. Then, each activity type was cross-checked in the Com-
pendium of Physical Activities (Ainsworth et al., 2011) to confirm activity intensity. This
procedure was also used in Visit 2.

2.3.2 Visit 2: Semi-Structured (Simulated Free-Living) Setting

Visit 2 was designed to have less structure than Visit 1, thereby better simulating how partic-
ipants might perform activities in their everyday lives. Past work has utilized such protocols
in the hopes of improving generalizability of findings to free-living settings (Montoye et al.,
2015; Staudenmayer et al., 2015). Once fitted with accelerometers, participants were asked
to spend colorred approximately 80 minutes in the laboratory performing activities (from
a list of the same 21 possible activities from Visit 1) as they would in their daily lives. In
order to increase the variety of activities performed, participants were asked to complete
at least four sedentary, four lifestyle/chore activities, and four ambulatory/exercise activi-
ties for 2-15 minutes each. Additionally, since previous research reports that adults spend
the majority of their waking hours in sedentary pursuits, participants were asked to spend
at least 40 minutes performing the activities in the sedentary category (Donaldson et al.,
2016; Matthews et al., 2008). In Visit 1 we controlled the activities performed, their exact
duration and order but in Visit 2 we put some general constraints within which participants
were allowed to choose how much time they spent in each activity, which activities they
wanted to perform, and the order of activities. Participants were also allowed to perform
the same activities multiple times but this rarely resulted in activities being performed more
than twice and when they were counted as only one activity. Research staff directly observed
and recorded the exact start and end times of each activity during Visit 2.

2.4 Data Cleaning

Data from Visit 1 and Visit 2 were processed and cleaned in the same way and are described
together. During data collection, initialization/download issues of monitors (n=1) and in-
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correct orientation of monitors (n=1) were discovered in one or both visits, resulting in the
exclusion of two participants’ data of the 30 recruited for the study. Thus, data from 28 par-
ticipants were available for model development and testing and demographic information
concerning these 28 participants can be found in Table 1.

Total Sample (n=28) Males (n=14) Females (n=14)
Age (years) 48.0± 19.6 48.5± 19.8 47.6± 20.2
Height (cm) 174.0± 9.0 180.4± 6.7 167.6± 5.8
Weight (kg) 80.1± 15.8 88.6± 12.5 71.5± 14.2
Body mass index
(BMI: kg/m^2) 26.3± 4.3 27.1± 3.2 25.4± 5.2

(a) Demographic information by sex (given as mean ± std. deviation)

Age category | Young (18-39) Middle (40-59) Old (60-79)
Participants 10 9 9

BMI category | Normal (< 25) Overweight (25.0− 29.9) Obese (≥ 30)
Participants 11 12 5

(b) Distribution of ages and BMIs

Table 1: Participant Demographic Information

Acceleration signals from the four ActiGraph GT9X Link accelerometers were divided into
nonoverlapping 30 second intervals. For each interval, the following time-domain features
were computed for each axis of the accelerometer: mean, variance, minimum, maximum,
upper percentiles (70th, 80th, 90th), and pairwise covariance of acceleration signals from
three axes. In addition to these time-domain features, participants’ age, sex, height and
weight are also considered as features in the classification process.

MET values for each activity were estimated using the 2011 Compendium of Physical
Activities (Ainsworth et al., 2011). Then, the intensity of each activity was determined as
one of four levels using the standard absolute MET thresholds of ≤ 1.5 METs as seden-
tary, 1.6-2.9 METs as light, 3.0-5.9 METs as moderate, and ≥ 6.0 METs as vigorous inten-
sities (Tremblay et al., 2017). We also did a sub-analysis where intensity categories were
collapsed into < 3.0 METs as low and ≥ 3.0 METs at MVPA. These directly observed ac-
tivity intensities served as the criterion/ground truth for development of prediction models
using accelerometer data. Once criterion data were coded according to activity intensity,
they were reintegrated to 30-second epochs/windows as done in past work (Montoye et al.,
2015).

At the end of each visit, raw accelerometer data from each monitor were downloaded
and stored as comma separated version (.csv) files. From these, features of the raw ac-
celeration signal were extracted in 30-second epochs. Features were chosen in accordance
with past work showing that the feature set provides optimal accuracy for predicting activ-
ity intensity (Montoye et al., 2017, 2018). Data from all accelerometers were time-aligned
with the criterion data, and all times coded as transitions between activities or breaks taken
between activities in the criterion data were removed from the dataset.

In both the training and test data sets we had n = 4313 observations. For each of the
n = 28 subjects we had approximately 4313/28 ≈ 154 observations. Each observation was
a summary of the 30 second epoch of accelerometer data with each subject observed for
approximately 154 ∗ 30 = 4620 seconds = 77 minutes. The 4313 observations from our
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n = 28 participants provide a rich amount of variability in activity intensities with a varied
population in terms of gender, age and BMI performing a range of activities as described in
sections 2.3.1 and 2.3.2.

2.5 Predictive Model Development and Testing

Our study sought to answer several primary questions: 1) what single accelerometer place-
ment has the lowest error rate for assessing activity intensity, 2) is there a combination of
accelerometers that provides lower error than any single accelerometer, 3) which type of pre-
dictive model has the lowest error rate for assessing activity intensity, and 4) did accuracy of
the developed machine learning models differ across demographic variables including age,
sex, and/or weight status? To answer these questions, we used an independent-samples
procedure. Data from Visit 1 were used as “training” data in order to develop predictive
models which would classify activity intensity based on the accelerometer data. Visit 2 was
used as “testing” data, where error rates of the predictive models developed from Visit 1
data would be evaluated by comparing predicted activity intensity in each 30-second inter-
val to the criterion measure of activity intensity. In this way, there was no overlap between
training and testing data. Additionally, because Visit 2 is more similar to a participants’
natural behaviors than Visit 1, the performance of the models in Visit 2 is meant to gain
some understanding of expected error if these models were used to assess activity intensity
in a free-living setting.

We developed prediction models for four accelerometer placements (left wrist, right
wrist, right hip, right ankle) as well as all possible two- and three-accelerometer combi-
nations. Additionally, for each accelerometer/combination, four machine/statistical learn-
ing modeling methods were used: a base learner classification tree, and three ensemble
learning methods including bagging, random forest, and boosting. Finally, all predictive
models were developed first to categorize intensity as a four-class variable (sedentary, light,
moderate, vigorous) and second as a two-class variable (low, MVPA).

Decision tree based learning methods are powerful classifiers that utilize a non-
parametric tree structure to model the relationship between a feature set and the outcome.
Classification tree algorithms may be divided into two groups: 1) trees based on binary
recursive partitioning and 2) trees based on nonbinary or multiway splits (Kim and Loh,
2001). The common theme of these algorithms is to split the feature space into subsets,
which are then split repeatedly into smaller subsets, until the process stops when some node
impurity conditions are satisfied. Four recursive binary tree algorithms such as a base clas-
sification tree, bagging, random forest, and boosting are implemented to address questions
1 and 2 above. Then classification accuracies of these four algorithms are compared for the
best performing device placement in terms of lowest misclassification error. Finally, the best
algorithm with the best placements are assessed to explore prediction accuracies among
subgroups of participants in terms of age, sex and weight status.

2.5.1 Single Classification Trees

Classification trees are the part of a larger group of decision tree-based models known as
classification and regression trees (CART) (Breiman et al., 1984) used for making predic-
tions about outcomes of interest. CART models are built recursively with binary partitions
of feature spaces. An optimal classification tree is built upon utilizing certain optimiza-
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tion criteria, such as maximizing accuracy or minimizing misclassification. Another related
algorithm for building a classification tree is the C5.0 (Quinlan, 1993) algorithm. Both algo-
rithms generate very similar classification results although the optimization criteria differs
during the splitting of the feature space. A single classification tree based on CART or the
C5.0 principle serves as a good reference method for more complex ensemble tree-based
methods for classification and is considered as a base learner in the process of systematic
selection of accelerometer placement.

2.5.2 Ensemble Methods

We compared the performance of three ensemble decision tree classification methods
against the reference single classification tree. These are bootstrap aggregating or bag-
ging (Breiman, 1996), random forest (Breiman, 2001), and boosting (Freund and Schapire,
1997). Both bagging and random forest algorithms are based on single trees built on boot-
strap training samples. However, unlike bagging, in random forest, each tree is constructed
by taking only a random sample of predictors without replacement before each node is split.
The main idea behind the third ensemble algorithm is to sequentially apply a weak classi-
fier (whose error rate is only slightly better than random guessing) to repeatedly modified
versions of the data. Predictions from this sequence of weak classifiers are then combined
through a weighted majority vote to produce a final prediction. While the random forest
algorithm has been widely applied in many classification applications, implementation of
the bagging and boosting algorithms is somewhat limited in particular for classifying physi-
cal activity intensity levels. In the current study, we implement all four decision tree-based
classifiers to address our primary research questions as well as to assess relative performance
of these algorithms for the best accelerometer placement in terms of error rates.

The four classification algorithms, single tree, bagging, random forest, and boosting are
trained on Visit 1 data using summary statistics of frequency measures from Visit 1 partic-
ipants as our training feature set and physical activity intensity levels in Visit 1. Prediction
accuracies of all the classification methods are computed treating Visit 2 data as the inde-
pendent test sample.

2.5.3 Prediction Error Rate Analysis

To make comparisons of error rates between different combinations of locations and be-
tween different classification methods in sections 3.1 and 3.2, we make comparisons with a
reference combination of locations and a reference classification method, respectively. 1200
bootstrap samples were created by sampling 1200 times with replacement from all n = 4313
observations in the training set, building models on each bootstrap sample and computing
classification errors for each of the 1200 samples on the testing set. Differences between
classification errors were computed for each individual sample to remove effects introduced
by different subjects in the study. Medians of error rates for the reference and medians of dif-
ferences of error rates with the reference over the 1200 samples were computed. Using the
percentile method, approximate 95% bootstrap confidence intervals (CIs) were constructed
as in Hogg et al. (2005), with a Bonferroni correction to account for multiple comparisons.
Point estimates are given as classification errors from the model built on the training set or
as medians of classification errors from the bootstrap samples. In sections 3.1.1 and 3.2.1,
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the boosting algorithm is applied to training sets for different combinations of locations and
confusion matrices are built on test sets.

Kappa Agreement

0.01-0.20 Slight

0.21-0.40 Fair

0.41-0.60 Good

0.61-0.80 Substantial

0.81-0.99 Almost perfect

Table 2: Interpreting Kappa

We stratified the results on demographic variables to
look for effects on accuracy. We also computed kappa
values to compare observed versus expected accuracies
and to account for correct classification by chance. For
classification of four activity levels we also computed
weighted kappa values (Cohen, 1968) as the data is ordi-
nal and misclassifications further away from true classifi-
cations are more significant than misclassifications closer
to true classifications. For example, we want to penalize
a misclassification of sedentary as light as less significant
than a misclassification of sedentary as moderate or vig-
orous. We use a linear weighted kappa measure to do so, with movement from the true
classification from one class to another penalized equally. A scale formulated in Landis and
Koch (1977) and often used to interpret kappa values is given in Table 2.

3 Results

For each predictive model, a test classification error from the test data on Visit 2, a boot-
strap median test error, and a 95% Bonferroni corrected bootstrap confidence interval were
reported for four accelerometer placements (left wrist, right wrist, right hip, right ankle) as
well as all possible single, two- and three-accelerometer combinations. Our first objective
was to determine: 1) a single accelerometer placement with lowest classification error for
assessing activity intensity, and 2) a combination of accelerometer placement with the low-
est error rate for assessing activity intensity. Test statistics are generated and these goals are
explored for both four-class (sedentary, light, moderate, vigorous) prediction in section 3.1
and for two-class (low, MVPA) prediction in section 3.2. For the best single and combined
accelerometer placements (in terms of error rates), we identified the predictive models with
lowest error rates, again considering both four- and two-class prediction. Finally, we ex-
plored if the accuracy of activity intensity prediction varied across a selected number of
demographic variables (age, sex, and BMI) for the best predictive model. Data from four
study participants and all the code used to create the models, tables and figures in this paper
is available at https://github.com/DrewLazar/SL Accelerometers.

3.1 Four-Class Prediction

In assessing error for four-class prediction (sedentary, light, moderate, vigorous) for bag-
ging, any single- or multi-accelerometer placement which included the ankle-worn ac-
celerometer had errors not significantly different from the reference placement (combina-
tion of all four accelerometers), whereas all other single- or multi-accelerometers place-
ments which did not include the ankle had significantly higher error rates than the reference
placement (Table 3a).

Similarly, for boosting and random forest, all two- and three-accelerometer combinations
including the ankle were not different from the reference placement (with the exception of
the ankle-left wrist accelerometer combination, where error was significantly lower than the
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reference), whereas all other two- and three-accelerometer combinations which did not in-
clude the ankle had significantly higher error than the reference placement (Tables 3b, 3c).
However, all single-accelerometer placements had significantly higher error than the refer-
ence placement for boosting and random forest models (Tables 3b, 3c).

For the single classification tree, the right wrist accelerometer had significantly higher
error than the reference method, but none of the other single accelerometer placements
were significantly different from the reference method. In addition, errors for all two-
and three-accelerometer combinations were not significantly different from the reference
method (Table 3d).

Figure 1 presents, for the boosting algorithm, distributions of differences of errors of
single- and two-accelerometer placements with the multi-accelerometer reference place-
ment. In comparison with single- vs. multi-accelerometer prediction, the two-accelerometer
ankle-left wrist combination and ankle-right wrist combination had slightly but consistently
lower error point estimates than any single-accelerometer placement for bagging, boosting,
and random forest with error point estimates 2.85-4.38 percentage points lower compared
to the ankle accelerometer with these three modeling methods (Tables 3a, 3b 3c). Con-
versely, for the classification tree, the ankle accelerometer placement had an error 1.09-1.40
percentage points lower than the ankle-left wrist and ankle-right wrist combinations (Ta-
ble 3d).

(a) One Placement (b) Two Placements
ANK=ankle, HIP=hip, LW=left wrist, RW=right wrist

Figure 1: Distributions of differences of prediction errors between one and two placements
and all placements for boosting algorithm - four activity levels.

Since the ankle accelerometer placement had the lowest predictive error of the single
accelerometers, and since multi-accelerometer combinations using the ankle (i.e., ankle-left
wrist and ankle-hip) had the lowest overall error, these were used to compare accelerometer
modeling methods using the classification tree as the reference method (Table 4). Tree
classification is the reference method as it is a base learner as explained in section 2.5.
For classification using the ankle accelerometer or the ankle-hip combination, error was
not different among modeling methods. However, for the ankle-left wrist combination, the
classification tree had significantly higher error than all other classification methods. For
the ankle accelerometer and two-accelerometer combinations, point estimates were slightly
lower for boosting compared to the other classification methods (Figure 2).
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Error rate of all locations - error rate of location(s). Error rates: Lower Same Higher

# of
Locs Locs

Test
Error Median 95% C.I.

4 all 0.305 0.312 (0.297, 0.331)
1 ak -0.027 -0.021 (-0.045, 0.008)

hp -0.049 -0.047 (-0.074,-0.019)
lw -0.045 -0.048 (-0.074,-0.021)
rw -0.060 -0.067 (-0.095,-0.039)

2 lw&ak 0.016 0.010 (-0.014, 0.038)
rw&ak 0.008 0.008 (-0.016, 0.033)
hp&ak -0.017 -0.014 (-0.039, 0.010)
rw&lw -0.042 -0.045 (-0.070,-0.018)
hp&lw -0.033 -0.033 (-0.053,-0.011)
hp&rw -0.040 -0.034 (-0.057,-0.012)

3 hp&lw&rw -0.036 -0.031 (-0.047,-0.014)
ak&lw&rw 0.003 0.005 (-0.015, 0.031)
an&hp&rw 0.002 0.001 (-0.018, 0.018)
hp&ak&lw -0.001 -0.001 (-0.015, 0.015)

(a) Bagging

# of
Locs Locs

Test
Error Median 95% C.I.

4 all 0.304 0.312 ( 0.300, 0.325)
1 ak -0.023 -0.021 (-0.040,-0.001)

hp -0.049 -0.039 (-0.062,-0.017)
lw -0.044 -0.050 (-0.071,-0.030)
rw -0.070 -0.067 (-0.089,-0.044)

2 lw&ak 0.021 0.013 (-0.006, 0.030)
rw&ak 0.010 0.009 (-0.012, 0.028)
hip&ak -0.008 -0.006 (-0.025, 0.012)
rw&lw -0.041 -0.039 (-0.058,-0.019)
hip&lw -0.030 -0.029 (-0.050,-0.010)
hip&rw -0.036 -0.031 (-0.050,-0.009)

3 hp&lw&rw -0.028 -0.029 (-0.047,-0.014)
ak&lw&rw 0.011 0.008 (-0.015, 0.031)
ak&hp&rw 0.004 0.002 (-0.018, 0.018)
hp&ak&lw 0.010 0.000 (-0.015, 0.014)

(b) Boosting
# of
Locs Locs

Test
Error Median 95% C.I.

4 all 0.314 0.315 ( 0.306, 0.323)
1 ank -0.020 -0.024 (-0.049,-0.009)

hp -0.052 -0.048 (-0.065,-0.034)
lw -0.037 -0.042 (-0.056,-0.027)
rw -0.059 -0.065 (-0.082,-0.050)

2 lw&ak 0.014 0.013 ( 0.000, 0.026)
rw&ak 0.009 0.006 (-0.007, 0.018)
hp&ak -0.010 -0.008 (-0.023, 0.003)
rw&lw -0.042 -0.040 (-0.055,-0.027)
hp&lw -0.034 -0.030 (-0.043,-0.017)
hp&rw -0.035 -0.036 (-0.050,-0.024)

3 hp&lw&rw -0.033 -0.030 (-0.040,-0.019)
ak&lw&rw 0.003 0.007 (-0.005, 0.017)
ak&hp&rw 0.007 0.002 (-0.009, 0.001)
hp&ak&lw 0.004 0.001 (-0.001, 0.010)

(c) Random Forest

# of
Locs Locs

Test
Error Median 95% C.I.

4 all 0.333 0.336 ( 0.308, 0.365)
1 ak -0.019 -0.021 (-0.121, 0.030)

hp -0.041 -0.040 (-0.096, 0.009)
lw -0.031 -0.037 (-0.089, 0.003)
rw -0.064 -0.082 (-0.173,-0.016)

2 lw&ak -0.033 -0.008 (-0.054, 0.042)
rw&ak -0.008 0.001 (-0.036, 0.047)
hip&ak -0.025 -0.014 (-0.050, 0.029)
rw&lw -0.021 -0.032 (-0.106, 0.011)
hp&lw -0.006 -0.028 (-0.010, 0.011)
hp&rw -0.016 -0.021 (-0.077, 0.028)

3 hp&lw&rw -0.004 -0.020 (-0.075, 0.013)
ak&lw&rw -0.008 0.001 (-0.036, 0.044)
ak&hp&rw 0.000 0.000 (-0.026, 0.031)
hp&ak&lw -0.003 0.000 (-0.043, 0.019)

(d) Tree
Locs=Locations, ak=ankle, hp=hip, lw=left wrist, rw=right wrist

Table 3: Comparison of prediction accuracies of activity intensity classifications of different
placements versus all placements - four activity levels

3.1.1 Comparisons Across Demographic Variables for Boosting Method for Four
Classes

Finally, comparisons across the demographic variables of age, weight status, and sex were
made, using the ankle accelerometer and two-accelerometer ankle-left wrist and ankle-hip
combinations with the boosting classification method as these provided the lowest clas-
sification errors in the previous analyses. Confusion matrices were constructed for each
demographic variable separately considering accelerometer placements on ankle, ankle-left
wrist combination, and ankle-hip combination using prediction results from the boosting
classification method. Table 5 presents classification errors and two agreement measures,
kappa and weighted kappa as given in 2.5.3, based on these confusion matrices.

When stratified by age (Table 5a), classification errors decreased, and kappa and
weighted kappa scores generally increased, with increasing age. In examining the confusion
matrices, the improved accuracy in older individuals may be partly due to higher partic-
ipation in sedentary behaviors and lower participation in vigorous activities in the oldest
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Error rate of tree method - error rate of method
Error rates: Lower Same Higher

Locs Method
Test
Error Median 95% C.I.

Ank tree 0.351 0.3520 (0.325, 0.442)
bag 0.019 0.022 (-0.017, 0.113)
boost 0.026 0.025 (-0.017, 0.120)
rf 0.016 0.017 (-0.020, 0.110)

Ank&lw tree 0.366 0.343 (0.318, 0.372)
bag 0.074 0.042 (0.014, 0.072)
boost 0.083 0.044 (0.017, 0.074)
rf 0.071 0.042 (0.016, 0.073)

Ank&hip tree 0.357 0.352 (0.314, 0.384)
bag 0.034 0.025 (-0.017, 0.062)
boost 0.046 0.033 (-0.009, 0.065)
rf 0.036 0.028 (-0.007, 0.061)

tree=decision tree, bag=bagging, boost=boosting, rf=random
forest, Ank=ankle, lw=left wrist

Table 4: Comparison of classification
methods to tree method with ankle,
ankle & left wrist, and ankle & hip
placements - four activity levels

Figure 2: Distributions of differences
of classification errors between different
methods and tree method - four activity
levels

group compared with the other two groups. For middle- and older-aged adults, weighted
kappa scores indicated substantial agreement, and for younger-aged adults, weighted kappa
scores indicated good agreement for the ankle accelerometer and both two-accelerometer
combinations.

When stratified by weight status (Table 5b), classification errors were consistently high-
est in the normal-weight group and lowest in the obese group. Kappa and weighted kappa
scores were not consistently different across groups, although the obese group had the high-
est kappa and weighted kappa scores for both two-accelerometer combinations and over-
weight had the highest kappa and weighted kappa scores for the ankle accelerometer. The
confusion matrices specific to weight status revealed virtually no participation in vigorous-
intensity physical activity in the obese group and may partially explain the higher accuracy
for intensity prediction in this group. Weighted kappa scores indicated substantial agree-
ment in the overweight and obese groups for the ankle-left wrist combination and good
agreement for all groups with the other accelerometers/combinations.

Finally, when stratified by sex (Table 5c), classification errors were lower and kappa and
weighted kappa scores were higher for activity intensity prediction in males compared to
females for the ankle accelerometer and both two-accelerometer combinations. For both
females and males, weighted kappa scores indicated substantial agreement for the ankle
accelerometer and both two-accelerometer combinations.

Figure 3 presents agreement plots as given in Bangdiwala (2017). These plots are for
the accelerometer placements (ankle and left wrist) and demographic strata with the lowest
classification errors and highest kappa values. For each activity level, the width and height
of the outer rectangle gives the marginal number of classifications of the activity level by
the boosting algorithm and true classification, respectively. The width of the black inner
square is the number of agreements for a particular class. The difference of the heights
of the outer rectangle to the black inner square is the number of misclassifications of that
particular class and the difference in the widths is the number of misclassifications of other
classes as that particular class. The gray shading represents misclassifications of adjacent
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Locs Variable
Error
Rate Kappa

Weighted
Kappa

Ank Overall 0.3263 0.5255 0.6578
Young 0.3824 0.4527 0.5559
Middle 0.3010 0.5596 0.7044
Old 0.2965 0.5599 0.7049

Ank Overall 0.2824 0.5860 0.7046
&lw Young 0.3641 0.4820 0.5801

Middle 0.2686 0.6035 0.7414
Old 0.2211 0.6612 0.7788

Ank Overall 0.3112 0.5401 0.6725
&hip Young 0.3950 0.4366 0.5492

Middle 0.2860 0.5730 0.7196
Old 0.2569 0.6068 0.7399

(a) Stratified by Age: Young (18-39), Middle
(40-59), Old (60-79)

Locs Variable
Error
Rate Kappa

Weighted
Kappa

Ank Overall 0.3263 0.5255 0.6578
Normal 0.3574 0.4851 0.6275
Overweight 0.3113 0.5500 0.6764
Obese 0.2900 0.5372 0.6531

Ank Overall 0.2824 0.5860 0.7046
&lw Normal 0.3080 0.5562 0.6859

Overweight 0.2876 0.5811 0.6764
Obese 0.2133 0.6526 0.7498

Ank Overall 0.3112 0.5401 0.6725
&hip Normal 0.3313 0.5212 0.6597

Overweight 0.3141 0.5380 0.6719
Obese 0.2593 0.5759 0.6873

(b) Stratified by BMI (kg/m2):
Normal (< 25.0), Overweight (25.0 − 29.9),
Obese (≥ 30)

LocationVariable
Error
Rate Kappa

Weighted
Kappa

Ank Overall 0.3263 0.5255 0.6578
Male 0.2973 0.4924 0.7023
Female 0.3528 0.5612 0.6160

Ank Overall 0.2824 0.5860 0.7046
&lw Male 0.2706 0.5754 0.7314

Female 0.2933 0.5967 0.6796
Ank Overall 0.3112 0.5401 0.6725
&hip Male 0.2987 0.5285 0.6996

Female 0.3226 0.5527 0.6478

(c) Stratified by Sex

Table 5: Predictive accuracy of boosting method for ankle, ankle & left wrist, and ankle &
hip placements stratified by demographic variables - four classes

classes. We can see in these plots that misclassifications outside of adjacent classes for all
demographic categories are relatively few. In the obese class there are only four participants
who engaged in vigorous activity, one of which was correctly classified. In general, the
classes aren’t balanced with vigorous activity the least common, then light activity, followed
by moderate activity and then sedentary activity the most common in line with the structure
of Visit 2 as given in section 2.3.2.

3.2 Two-Class Prediction

In assessing error for two-class prediction (MVPA vs. low), similar results were observed
as with the four-class prediction. Specifically, for bagging and boosting, any single-
accelerometer placement or multi-accelerometer combination which included the ankle-
worn accelerometer had errors not significantly different from the reference placement of all
locations, whereas all other single-accelerometer placements or multi-accelerometer combi-
nations which did not include the ankle had significantly higher error rates than the refer-
ence placement (Tables 6a, 6b).

Plots for boosting indicate little difference in single-accelerometer placements for the
ankle, hip, and left wrist placements but illustrate a trend for higher accuracy in two-
accelerometer combinations which include the ankle (Figures 4a and 4b).
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(a) Agreement Plot for All (b) Agreement Plot for Old Age

(c) Agreement Plot for Obese (BMI ≥ 30) (d) Agreement Plot for Male

Figure 3: Agreement Plots for Boosting: Ankle and Left Wrist Placements

(a) One Location
(b) Two Locations

Figure 4: Distributions of differences of prediction errors between one and two placements
and all placements for boosting algorithm - two activity levels

For random forest, the single-accelerometer placement on the ankle had significantly
lower error than the reference placement, and all two- and three-accelerometer combina-
tions had errors not significantly different from the reference. All single accelerometers
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Error rate of all locations - error rate of location(s). Error rates: Lower Same Higher

# of
Locs Locs

Test
Error Median 95% C.I.

4 all 0.122 0.126 (0.117, 0.136)
1 ak 0.001 0.005 (-0.007, 0.018)

hp -0.035 -0.035 (-0.057, -0.018)
lw -0.045 -0.042 (-0.061, -0.025)
rw -0.067 -0.071 (-0.088, -0.053)

2 lw&ak 0.003 0.004 (-0.007, 0.016)
rw&ak 0.003 0.002 (-0.008, 0.016)
hip&ak -0.007 -0.002 (-0.012, 0.010)
rw&lw -0.039 -0.038 (-0.056, -0.019)
hp&lw -0.019 -0.025 (-0.044, -0.007)
hp&rw -0.034 -0.033 (-0.051, -0.017)

3 hp&lw&rw -0.024 -0.025 (-0.042, -0.008)
ak&lw&rw 0.001 0.002 (-0.008, 0.013)
ak&hp&rw 0.001 -0.001 (-0.008, 0.007)
hp&ak&lw -0.002 0.001 (-0.007, 0.009)

(a) Bagging

# of
Locs Locs

Test
Error Median 95% C.I.

4 all 0.129 0.124 (0.118, 0.132)
1 ank 0.019 0.008 (-0.003, 0.019)

hp -0.019 -0.030 (-0.044, -0.019)
lw -0.041 -0.043 (-0.055, -0.031)
rw -0.058 -0.066 (-0.080, -0.053)

2 lw&ak 0.015 0.005 (-0.004, 0.016)
rw&ak 0.012 0.007 (-0.002, 0.019)
hip&ak 0.009 0.001 (-0.009, 0.012)
rw&lw -0.030 -0.039 (-0.050, -0.026)
hp&lw -0.015 -0.022 (-0.035, -0.011)
hp&rw -0.019 -0.028 (-0.040, -0.015)

3 hp&lw&rw -0.017 -0.024 (-0.042, -0.008)
ak&lw&rw 0.011 0.004 (-0.008, 0.013)
ak&hp&rw 0.004 0.001 (-0.008, 0.007)
hp&ak&lw 0.001 0.001 (-0.007, 0.009)

(b) Boosting
# of
Locs Locs

Test
Error Median 95% C.I.

4 all 0.126 0.125 (0.120, 0.131)
1 ak 0.007 0.009 (0.000, 0.017)

hp -0.031 -0.032 (-0.043, -0.021)
lw -0.038 -0.040 (-0.050, -0.029)
rw -0.066 -0.065 (-0.076, -0.055)

2 lw&ak 0.006 0.007 (-0.001, 0.014)
rw&ak 0.008 0.006 (-0.001, 0.013)
hip&ak 0.001 0.002 (-0.007, 0.008)
rw&lw -0.036 -0.038 (-0.048, -0.027)
hp&lw -0.026 -0.024 (-0.032, -0.015)
hp&rw -0.030 -0.031 (-0.040, -0.022)

3 hp&lw&rw -0.031 -0.026 (-0.035, -0.018)
ak&lw&rw 0.005 0.005 (-0.001, 0.012)
ak&hp&rw 0.001 0.000 (-0.005, 0.005)
hp&ak&lw -0.001 0.001 (-0.005, 0.006)

(c) Random Forest

# of
Locs Locs

Test
Error Median 95% C.I.

4 all 0.133 0.134 (0.117, 0.152)
1 ak 0.000 0.000 (-0.026, 0.021)

hp -0.040 -0.030 (-0.076, 0.005)
lw -0.050 -0.042 (-0.081, -0.015 )
rw -0.057 -0.073 (-0.119, -0.036)

2 lw&ak 0.000 0.000 (-0.024, 0.025)
rw&ak 0.000 0.000 (-0.024, 0.025)
hp&ak 0.000 0.000 (-0.025, 0.012)
rw&lw -0.044 -0.037 (-0.079, -0.007)
hp&lw -0.031 -0.025 (-0.074, 0.009)
hp&rw -0.036 -0.029 (-0.068, 0.008)

3 hp&lw&rw -0.024 -0.027 (-0.067, 0.006)
ak&lw&rw 0.000 0.000 (-0.026, 0.018)
ak&hp&rw 0.000 0.000 (-0.007, 0.004)
hp&ak&lw 0.000 0.000 (-0.012, 0.007)

(d) Tree
Locs=Locations, ak=ankle, hp=hip, lw=left wrist, rw=right wrist

Table 6: Comparison of prediction accuracies of activity intensity classifications of different
placements versus all placements - two activity levels

other than the ankle and multi-accelerometer combinations not including the ankle had
significantly higher error than the reference placement (Table 6c).

Finally, for the classification tree modelling approach, the single-accelerometer place-
ments on the ankle and hip, all two-accelerometer combinations which included the ankle,
and all three-accelerometer combinations were not different from the reference, whereas the
single-accelerometer placement on either wrist as well as the two-accelerometer placement
with both wrists had significantly higher error than the reference placement (Table 6d).

In comparing modeling methods with the best-performing accelerometer placements
including only on the ankle and two-accelerometer combinations of ankle-left wrist and
ankle-hip (Table 7), boosting and random forest had significantly lower errors than clas-
sification tree for the ankle accelerometer and ankle-left wrist combination. There were
no other significant differences among model types, although point estimates for boosting
indicated slightly lower errors than the other modeling methods for the ankle and both
two-accelerometer combinations tested (Figure 5).
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Error rate of tree method - error rate of method
Error rates: Lower Same Higher

Locs Method
Test
Error Median 95% C.I.

Ank tree 0.133 0.135 (0.125, 0.168)
bag 0.015 0.014 (-0.000, 0.049)
boost 0.023 0.018 (0.004, 0.051)
rf 0.017 0.018 (0.007, 0.052)

Ank&lw tree 0.133 0.135 (0.121, 0.161)
bag 0.012 0.013 (-0.003, 0.044)
boost 0.019 0.016 (0.002, 0.047)
rf 0.014 0.016 (0.003, 0.043)

Ank&hip tree 0.133 0.135 (0.115, 0.162)
bag 0.001 0.006 (-0.016, 0.036)
boost 0.013 0.011 (-0.012, 0.038)
rf 0.010 0.011 (-0.009, 0.038)

tree=decision tree, bag=bagging, boost=boosting, rf=random
forest, Ank=ankle, lw=left wrist

Table 7: Comparison of classification
methods to tree method with ankle,
ankle & left wrist, and ankle & hip
placements - two activity levels

Figure 5: Distributions of differences
of classification errors between different
methods and tree method - two activity
levels

3.2.1 Comparisons Across Demographic Variables for Boosting Method for Two
Classes

Finally, subanalyses by age, weight status, and sex were performed as shown in Table 8.
When stratifying by age, the classification error was highest (and kappa lowest) in the
youngest age group, and classification error was lowest (and kappa highest) in the mid-
dle age group. Kappa scores indicated good agreement adjusted for agreement by chance
alone for all age groups and all accelerometers/combinations.

Stratifying by weight status, classification errors were lowest in the obese group for the
ankle and ankle-left wrist combination, although errors were lowest in the normal weight
group with the ankle-hip combination. Conversely, kappa scores were highest for the normal
weight group for all accelerometers/combinations. The discord between the kappa and
classification error scores is likely due to the proportion of time spent in each intensity
category, with the obese group spending substantially less time in MVPA (23.8%) than the
youngest group (35.5%) and overweight group (39.9%). As with the other stratifications,
kappa scores indicated good agreement across all weight status groups.

Similar to the four-class analysis, males had lower error and higher kappa scores than
females for the ankle accelerometer and both two-accelerometer combinations, and kappa
scores for both sexes indicated good agreement.

4 Discussion

Our study sought to answer several interrelated questions, including determination of the
most accurate single- and multi-accelerometer placements and the highest performing pre-
dictive model for assessing physical activity intensity in an adult population diverse in age
and fitness level. Second, we conducted subgroup analyses to determine if accuracy of the
developed models varied according to age, sex, or weight status. This subanalysis, and in
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Locs Variable
Error
Rate Kappa

Ank Overall 0.1104 0.7523
Young 0.1338 0.6982
Middle 0.0964 0.7841
Old 0.1007 0.7749

Ank&lw Overall 0.1143 0.7425
Young 0.1317 0.7008
Middle 0.0940 0.7902
Old 0.1149 0.7414

Ank&hip Overall 0.1201 0.7302
Young 0.1387 0.6852
Middle 0.1043 0.7669
Old 0.1161 0.7406

(a) Stratified by Age: Young (18-39), Middle
(40-59), Old (60-79)

Locs Variable
Error
Rate Kappa

Ank Overall 0.1104 0.7523
Normal 0.1097 0.7563
Overweight 0.1187 0.7477
Obese 0.0933 0.7322

Ank&lw Overall 0.1143 0.7425
Normal 0.1108 0.7508
Overweight 0.1215 0.7407
Obese 0.1061 0.7079

Ank&hip Overall 0.1201 0.7302
Normal 0.1097 0.7552
Overweight 0.1308 0.7151
Obese 0.1149 0.6951

(b) Stratified by BMI (kg/m2):
Normal (< 25.0), Overweight (25.0 − 29.9),
Obese (≥ 30)

Locs Variable
Error
Rate Kappa

Ank Overall 0.1104 0.7523
Male 0.0937 0.7870
Female 0.1256 0.7213

Ank&lw Overall 0.1143 0.7425
Male 0.0986 0.7750
Female 0.1287 0.7133

Ank&hip Overall 0.1201 0.7302
Male 0.1059 0.7591
Female 0.1331 0.7043

(c) Stratified by Sex

Table 8: Predictive accuracy of boosting method for ankle, ankle & left wrist, and ankle &
hip placements stratified by demographic variables - two classes

particular, the comparisons of placement accuracies is a major difference with the study
in Montoye et al. (2018) and an important and novel contribution to the literature in this
field in general.

Overall, our results suggest that a single accelerometer worn on the ankle is superior
to hip- or wrist-worn accelerometers. Past research using machine learning methods to
predict activity intensity found that a thigh-worn accelerometer had higher accuracy than
hip- or wrist-worn accelerometers (Montoye et al., 2016), however, less comfort and lower
compliance with the thigh accelerometer placement has has also been reported. Similarly,
a recent study examining accuracy of different activity monitor placement sites for step-
counting showed a clear improvement in accuracy using the ankle-worn StepWatch activ-
ity monitor compared to any hip- or wrist-worn devices (Toth et al., 2018). Finally, re-
searchers examining energy expenditure prediction accuracy from activity monitors found
that a monitor worn on the shoe had lower error than hip- or wrist-worn devices as well
as a five-accelerometer system (Dannecker et al., 2013). Therefore, our study’s findings are
in concordance with other recent work and indicate that activity monitors worn somewhere
on the lower limb provide better assessment of physical activity than devices worn on other
body locations. However, accuracy of the ankle- or thigh-placement sites must be consid-
ered alongside with compliance wearing a device at one of those locations. Thigh-worn
accelerometers must be taped in place, which may be less comfortable for wearers of the
device. While ankle-worn devices can be secured via elastic band, there have been anecdotal
reports that ankle-worn devices are mistaken for police-issued monitoring devices, although
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a recent study found high compliance wearing an ankle-worn accelerometer and specifi-
cally noted that only 2 of 459 participants refused to wear the accelerometer possibly due
to concerns about perceptions associated with an ankle-worn device (Hager et al., 2015).
Additionally, as technology improves and devices continue to shrink in size, thigh- or ankle-
worn devices may be able to be embedded into clothing (such as pants or socks) or worn
as a small patch like a bandage, which would reduce burden to the wearer and make the
devices less conspicuous to wear.

Aside from the ankle-worn accelerometer, the left wrist-worn accelerometer had similar
error to the hip-worn accelerometer, both of which had lower error estimates than the right
wrist-worn accelerometer. For all but two participants, the left wrist was their non-dominant
wrist, suggesting that placement on the non-dominant wrist may yield slightly higher accu-
racy for assessment of activity intensity using our predictive models. This finding is in con-
cordance with the National Health and Nutrition Examination Survey (NHANES) physical
activity surveillance protocol, which has been collecting accelerometer data on participants’
non-dominant wrist starting in the 2011-2014 collection cycle (Troiano et al., 2014). Given
the popularity of wrist-worn activity tracking devices and high compliance noted by Troiano
et al. (2014) with wrist-worn accelerometers, in some situations the loss in accuracy with a
wrist-worn device may be justified given the improved compliance.

In comparing single- with multi-accelerometer predictions, slight improvements were
noted using a two accelerometer ankle-left wrist combination, although the improvements
in accuracy were not seen across all modeling types. Past research has noted improve-
ments in accuracy of multi-accelerometer systems over single accelerometers for assessment
of activity type (Dong et al., 2013), with one recent study by Chowdhury et al. (Chowd-
hury et al., 2017) indicating that an ankle-wrist accelerometer combination was superior to
other two- and three-accelerometer combinations tested. Conversely, evidence of potential
benefits of multi-accelerometer systems for accuracy in assessing energy expenditure is less
consistent (Dannecker et al., 2013; Löf et al., 2013). Given these past studies along with the
present study’s findings, the small benefit of using two accelerometers vs. one may not be
worth the increased burden on wearers, although as previously noted device miniaturiza-
tion and embedment in clothing may make multi-accelerometer systems less burdensome.
Additionally, the ankle-left wrist combination was in some cases more accurate than any
three- or four-accelerometer combination, suggesting that more accelerometer data does
not necessarily improve accuracy in physical activity intensity assessment. Similar findings
were shown by Mackintosh et al. (2016), who found that two-accelerometer systems had
superior accuracy to systems of 3-8 accelerometers when assessing energy expenditure in
children. As an alternate to using more accelerometers, using additional sensors alongside
an accelerometer (within a single monitor or as a multi-monitor system), such as heart rate
or gyroscope, has been shown to improve measurement of energy expenditure and may
be considered as an option for further improvement of physical activity intensity assess-
ment (O’Driscoll et al., 2018; Lu et al., 2018; Hibbing et al., 2018).

Another of our primary research questions was to compare modeling methods, and we
did this using our best performing single-accelerometer placement (ankle) as well as our
best performing two-accelerometer placements (ankle-left wrist and ankle-hip). All en-
semble methods (bagging, boosting, and random forest) had significantly lower error than
the classification tree for the four-class intensity classification with the ankle-left wrist ac-
celerometer combination and nonsignificantly trended in this direction for the ankle and
ankle-hip combination. For two-class intensity classification, boosting and random forest
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had significantly lower errors than the classification tree for the ankle and ankle-left wrist
combination, whereas errors from bagging were not different from the classification tree.
The superiority of ensemble methods to single classifiers is not surprising given the the-
oretical basis for the methods and is supported by recent work (Chowdhury et al., 2017;
Montoye et al., 2018). The relatively small differences in accuracy among methods allows
for some flexibility in model choice depending on computation complexity/run time desired
for the modeling approaches. The similarity in accuracy of the tested ensemble methods,
along with past work suggesting that feature selection from accelerometer data has minimal
effect on activity intensity accuracy (Montoye et al., 2018) and our present findings that ad-
ditional accelerometers have minimal effect on accuracy, suggests that instead of searching
for more accurate modeling methods or feature sets, improvements in accuracy for assess-
ment of physical activity intensity may require a greater variety of sensors (e.g., heart rate)
in addition to accelerometry within one or more body-worn devices. This possibility should
be explored in future work.

Error rates of our best performing models were approximately 29-30% for our best per-
forming accelerometers in the four-class intensity classification. Comparisons to past work
are difficult given the nature and variety of activities performed during protocols, but our
errors are slightly higher compared to the ≈ 22 − 23% errors found for four-class intensity
prediction in a previous study by Montoye et al. (Montoye et al., 2018) using a left-wrist
accelerometer and random forest modeling approach. Conversely, our errors are similar to
or slightly lower than those of Sasaki et al. (Sasaki et al., 2016) who found error rates of
33% for an ankle-worn accelerometer and 39% for a wrist-worn accelerometer when assess-
ing five-class activity prediction using a random forest classifier. While Sasaki et al. (2016)
note that the more recent machine learning approaches have helped to reduce classification
error using accelerometers, the high errors for physical activity prediction necessitates fur-
ther research that examines approaches to continue to improve activity intensity assessment
since activity intensity is a central component of many national physical activity recommen-
dations (Piercy et al., 2018).

Subgroup analyses indicate that the models performed with substantial agreement across
all age, sex, and BMI subgroups tested, suggesting that these models are appropriate to apply
across a diverse adult population. Additionally, the weighted kappa scores were substantially
higher than the unweighted kappa scores for our modeling methods, suggesting many “near
misses” when predicting activity intensity. This would suggest that accelerometer data gives
a lot, but not all, of the information necessary to correctly assess physical activity intensity
across all activity types. As indicated above, additional sensors to assess other physiological
or movement variables may offer additional, unique information to assist with improve-
ment of physical activity intensity assessment from body-worn devices. Our study had many
notable strengths. The inclusion of a diverse adult population facilitated development of
models that achieved similarly high agreement with criterion data across all tested subgroup
analyses. Additionally, the use of multiple accelerometers and modeling methods enabled
for critical analysis of multiple important questions regarding accelerometer use simultane-
ously. Finally, our use of a true independent sample for cross-validation gave better insight
into expected accuracy of these models in a new population, whereas holdout approaches
such as leave-one-out cross-validation, which is commonly used with small datasets, may
overestimate accuracy of developed models when applied in a new setting (Montoye et al.,
2018).
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Our study also had several limitations. Our use of direct observation as a criterion
method suggested that all activities of a certain type resulted in a similar activity inten-
sity, whereas a method such as indirect calorimetry would allow physiologic assessment
of participant effort and intensity. However, our data included a large proportion of non-
steady-state movements, which impose significant hurdles to indirect calorimetry analysis.
Additionally, similar direct observation systems have been validated by other researchers
and used in both laboratory and field-based settings (Lyden et al., 2014; Marcotte et al.,
2019; Alhassan et al., 2017) justifying our use as a criterion measure in this study. Addi-
tionally, while past studies have evaluated contributions of different feature sets to accuracy
of machine learning models, our study chose a single feature set to constrain our analysis
to a more reasonable amount of data; future analyses should continue to assess interrela-
tionships among feature sets, modeling methods, and accelerometer placements to optimize
physical activity intensity assessment. Another modeling issue is that we considered recur-
sive partition based classification methods that are shown to result in biased selection of
features (Loh, 2002). Future research will explore recently developed classification algo-
rithms based on unbiased feature selection criteria such as, Subgroup Identification based
on Differential Effect Search (SIDES) (Lipkovich et al., 2011) and the Generalized Unbiased
Interaction Detection and Estimation (GUIDE) (Loh et al., 2015). It remains to explore the
extent to which these computationally intensive algorithms affect the accuracy in predicting
physical activity intensity levels. Finally, participants in this study were all healthy and capa-
ble of participating in vigorous-intensity exercise, which may make our sample more fit than
the average adult population. Cross-validation of our models in a lower-fitness population is
therefore required before use in such a population. Additionally, while absolute MET thresh-
olds for determining activity intensity are appropriate for younger adults of average/above
average fitness, thresholds scaled to fitness level are more appropriate for extremely high- or
low-fitness individuals. It may be that our modeling approach could be made more accurate
if individualized to fitness level, as has been attempted with other accelerometer analysis
methods (Ozemek et al., 2013).

In conclusion, our study found that an accelerometer worn on the ankle, coupled with
ensemble machine learning methods, achieved optimal accuracy for assessment of physical
activity intensity. A two-accelerometer ankle-left wrist accelerometer combination yielded
minor improvements over the ankle alone, but there was no additional benefit from more
accelerometers or other two-accelerometer combinations. Future research should investi-
gate using additional physiologic or movement sensors to further improve physical activity
intensity assessment.
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differential effect searchâĂŤa recursive partitioning method for establishing response
to treatment in patient subpopulations.” Statistics in Medicine, 30(21), 2601–2621.
doi:http://dx.doi.org/10.1002/sim.4289.

Löf M, Henriksson H, Forsum E (2013). “Evaluations of Actiheart, IDEEA R© and RT3 mon-
itors for estimating activity energy expenditure in free-living women.” Journal of Nutri-
tional Science, 2.

Loh WY (2002). “Regression tress with unbiased variable selection and interaction detec-
tion.” Statistica Sinica, pp. 361–386.

Loh WY, He X, Man M (2015). “A regression tree approach to identifying sub-
groups with differential treatment effects.” Statistics in Medicine, 34(11), 1818–1833.
doi:http://dx.doi.org/10.1002/sim.6454.

Lu K, Yang L, Seoane F, Abtahi F, Forsman M, Lindecrantz K (2018). “Fu-
sion of Heart Rate, Respiration and Motion Measurements from a Wearable Sen-
sor System to Enhance Energy Expenditure Estimation.” Sensors, 18(9), 3092.
doi:http://dx.doi.org/10.3390/s18093092.

Lyden K, Petruski N, Mix S, Staudenmayer J, Freedson P (2014). “Direct observation is a
valid criterion for estimating physical activity and sedentary behavior.” Journal of Physical
Activity and Health, 11(4), 860–863. doi:http://dx.doi.org/10.1123/jpah.2012-0290.

Mackintosh K, Montoye AH, Pfeiffer K, McNarry M (2016). “Investigating op-
timal accelerometer placement for energy expenditure prediction in children us-
ing a machine learning approach.” Physiological Measurement, 37(10), 1728.
doi:http://dx.doi.org/10.1088/0967-3334/37/10/1728.

Marcotte RT, Petrucci JG, Cox MF, Freedson PS, Staudenmayer JW, Sirard JR (2019). “Esti-
mating Sedentary Time from a Hip-and Wrist-worn Accelerometer.” Medicine & Science in
Sports & Exercise. doi:http://dx.doi.org/10.1249/MSS.0000000000002099.

Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP (2008).
“Amount of time spent in sedentary behaviors in the United States, 2003–2004.” American
Journal of Epidemiology, 167(7), 875–881. doi:http://dx.doi.org/10.1093/aje/kwm390.

Montoye AH, Begum M, Henning Z, Pfeiffer KA (2017). “Comparison of linear and non-
linear models for predicting energy expenditure from raw accelerometer data.” Physiolog-
ical Measurement, 38(2), 343. doi:http://dx.doi.org/10.1088/1361-6579/38/2/343.

Montoye AH, Mudd LM, Biswas S, Pfeiffer KA (2015). “Energy Expenditure Prediction Using
Raw Accelerometer Data in Simulated Free Living.” Medicine & Science in Sports & Exercise,
47(8), 1735–1746. doi:http://dx.doi.org/10.1249/MSS.0000000000000597.

Montoye AH, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA (2016). “Validation and compar-
ison of accelerometers worn on the hip, thigh, and wrists for measuring physical activity
and sedentary behavior.” AIMS Public Health, 3(2), 298.

J Biomed Analytics, Vol. 3 No. 1 (2020), pp. 27–50

http://dx.doi.org/http://dx.doi.org/10.1002/sim.4289
http://dx.doi.org/http://dx.doi.org/10.1002/sim.6454
http://dx.doi.org/http://dx.doi.org/10.3390/s18093092
http://dx.doi.org/http://dx.doi.org/10.1123/jpah.2012-0290
http://dx.doi.org/http://dx.doi.org/10.1088/0967-3334/37/10/1728
http://dx.doi.org/http://dx.doi.org/10.1249/MSS.0000000000002099
http://dx.doi.org/http://dx.doi.org/10.1093/aje/kwm390
http://dx.doi.org/http://dx.doi.org/10.1088/1361-6579/38/2/343
http://dx.doi.org/http://dx.doi.org/10.1249/MSS.0000000000000597


50 Lazar et al.

Montoye AH, Westgate BS, Fonley MR, Pfeiffer KA (2018). “Cross-validation
and out-of-sample testing of physical activity intensity predictions with a wrist-
worn accelerometer.” Journal of Applied Physiology, 124(5), 1284–1293.
doi:http://dx.doi.org/10.1152/japplphysiol.00760.2017.

O’Driscoll R, Turicchi J, Beaulieu K, Scott S, Matu J, Deighton K, Finlayson G, Stubbs J
(2018). “How well do activity monitors estimate energy expenditure? A systematic re-
view and meta-analysis of the validity of current technologies.” British Journal of Sports
Medicine, pp. bjsports–2018. doi:http://dx.doi.org/10.1017/S0029665118001532.

Ozemek C, Cochran HL, Strath SJ, Byun W, Kaminsky LA (2013). “Estimating relative inten-
sity using individualized accelerometer cutpoints: the importance of fitness level.” BMC
Medical Research Methodology, 13(1), 53. doi:http://dx.doi.org/10.1186/1471-2288-13-
53.

Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, Buchner D, Ettinger W,
Heath GW, King AC, et al. (1995). “Physical activity and public health: a recommendation
from the Centers for Disease Control and Prevention and the American College of Sports
Medicine.” JAMA, 273(5), 402–407. doi:http://dx.doi.org/10.1001/jama.273.5.402.

Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson
RD (2018). “The physical activity guidelines for Americans.” JAMA, 320(19), 2020–2028.
doi:http://dx.doi.org/10.1001/jama.2018.14854.

Quinlan JR (1993). “C4.5: Programming for machine learning.” Morgan Kauffmann, 38,
48.

Sasaki JE, Hickey A, Staudenmayer J, John D, Kent JA, Freedson PS (2016). “Performance of
activity classification algorithms in free-living older adults.” Medicine & Science in Sports
& Exercise, 48(5), 941. doi:http://dx.doi.org/10.1249/MSS.0000000000000844.

Staudenmayer J, He S, Hickey A, Sasaki J, Freedson P (2015). “Methods to esti-
mate aspects of physical activity and sedentary behavior from high-frequency wrist
accelerometer measurements.” Journal of Applied Physiology, 119(4), 396–403.
doi:http://dx.doi.org/10.1152/japplphysiol.00026.2015.

Toth LP, Park S, Springer CM, Feyerabend MD, Steeves JA, Bassett DR (2018).
“Video-recorded validation of wearable step counters under free-living con-
ditions.” Medicine & Science in Sports & Exercise, 50(6), 1315–1322.
doi:http://dx.doi.org/10.1249/01.mss.0000535946.47131.ae.

Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, Chastin SF,
Altenburg TM, Chinapaw MJ (2017). “Sedentary behavior research network (SBRN)–
terminology consensus project process and outcome.” International Journal of Behavioral
Nutrition and Physical Activity, 14(1), 75. doi:http://dx.doi.org/10.1186/s12966-017-
0525-8.

Troiano RP, McClain JJ, Brychta RJ, Chen KY (2014). “Evolution of accelerometer methods
for physical activity research.” British Journal of Sports Medicine, 48(13), 1019–1023.
doi:http://dx.doi.org/10.1136/bjsports-2014-093546.

www.jBiomedAnalytics.org

http://dx.doi.org/http://dx.doi.org/10.1152/japplphysiol.00760.2017
http://dx.doi.org/http://dx.doi.org/10.1017/S0029665118001532
http://dx.doi.org/http://dx.doi.org/10.1186/1471-2288-13-53
http://dx.doi.org/http://dx.doi.org/10.1186/1471-2288-13-53
http://dx.doi.org/http://dx.doi.org/10.1001/jama.273.5.402
http://dx.doi.org/http://dx.doi.org/10.1001/jama.2018.14854
http://dx.doi.org/http://dx.doi.org/10.1249/MSS.0000000000000844
http://dx.doi.org/http://dx.doi.org/10.1152/japplphysiol.00026.2015
http://dx.doi.org/http://dx.doi.org/10.1249/01.mss.0000535946.47131.ae
http://dx.doi.org/http://dx.doi.org/10.1186/s12966-017-0525-8
http://dx.doi.org/http://dx.doi.org/10.1186/s12966-017-0525-8
http://dx.doi.org/http://dx.doi.org/10.1136/bjsports-2014-093546
http://www.jBiomedAnalytics.org

	Introduction
	Methods
	Participants
	Equipment
	Protocol
	Visit 1: Structured Setting
	Visit 2: Semi-Structured (Simulated Free-Living) Setting

	Data Cleaning
	Predictive Model Development and Testing
	Single Classification Trees
	Ensemble Methods
	Prediction Error Rate Analysis


	Results
	Four-Class Prediction
	Comparisons Across Demographic Variables for Boosting Method for Four Classes

	Two-Class Prediction
	Comparisons Across Demographic Variables for Boosting Method for Two Classes


	Discussion

