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Abstract: Breast cancer is the most frequently diagnosed and the second cause of cancer
deaths among women. Several genes are found to be significantly responsible for developing
breast cancer. When healthy, these genes act as tumor suppressors by producing a protein
that prevents cells from growing uncontrollably. But with mutations and other disorders in
these genes, cells can grow quickly and tumors may form. In previous research it has been
shown that higher risk of developing breast cancer is associated with having a number of
gene mutation, but it is not clear how genetic factors affect the survival pattern in breast
cancer patients in the presence of clinical and other relevant factors. In this paper, we
consider the joint effect of a number of important genes and relevant clinical factors to
study the survival pattern of breast cancer patients using data from The Cancer Genome
Atlas (TCGA) project. Among the clinical variables, increasing age, premenopausal status,
prior history of cancer and neoplasm status with tumor, Black or African American race and
stage IIIA have significantly higher risk of failure (death) from breast cancer. We found
significant difference in survival time between altered and non-altered cases in four genes
FOXA1, MLH1, RAD50, and RAD51C while considered genetic factors only. After controlling
for clinical factors, patients with three mutated genes RAD50, PTEN, and MAP3K1 had
higher relative risk of failure from breast cancer.
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1 Introduction

Breast cancer which starts in the tissues of the breast is the most frequently diagnosed cancer
and the second cause of cancer deaths in women. Invasive Ductal Carcinoma (IDC) is the
most common type of breast cancer and it comprises about 70% to 80% of all breast cancer
(National Breast Cancer, 1991). About 10% of all cases of advanced breast cancer are Inva-
sive Lobular Carcinoma (ILC). In 2017, an estimated 255,180 new cases of invasive breast
cancer are expected to be diagnosed in women in the U.S, along with 63,410 new cases
of non-invasive breast cancer (Breastcancer.org, 1999). Men can also have breast cancer,
although breast cancer in male is not as prevalent as in women. About 2,470 new cases
of invasive breast cancer are expected to be diagnosed in men in 2017 (Breastcancer.org,
1999).

Prognostic factors of breast cancer constitute both clinical and genetic factors as found
in the literature. A number of studies (Faradmal et al., 2012; Abadi et al., 2014; Bilal
et al., 2013), investigated the role of clinically associated factors such as, age at menopause,
age at diagnosis, stage of the disease, tumor size, histological grade, type of therapy re-
ceived (hormone therapy, radiotherapy, or chemotherapy), and family history on patient’s
survival. Similarly a number of studies (Martin and Weber, 2000; Apostolou and Fostira,
2013; Ciriello et al., 2015), addressed association of genes and their mutations with occur-
rences of breast cancer. In order to investigate the joint role of clinical and genetic factors
on the breast cancer patient’s survival we abstracted survival, clinical, and gene expression
data from TCGA separately and combined them.

Gene expression levels can provide how information from a gene is used in the com-
position of a functional gene product (Wikipedia, 2001a). Products are often proteins, but
in non-protein coding genes such as transfer RNA (tRNA) or small nuclear RNA (snRNA)
genes, the product is a functional RNA. Expressions are quantified to study cellular changes
in response to external changes or stimuli and to study differences between healthy and
diseased states.

RNA-Seq (RNA Sequencing), also called whole transcriptome shotgun sequencing
(WTSS), uses next-generation sequencing (NGS) to reveal the presence and quantity of RNA
in a biological sample at a given time (Wikipedia, 2001b). It is generally used to compare
differential gene expressions between two or conditions, such as treated vs non-treated,
wild-type versus mutant, and to find out which genes are up- or down-regulated in each
condition. We considered the RNA-Seq expression data for all the patients as genetic factors
from TCGA database.

In previous research it has been shown that higher risk of developing both invasive breast
cancer is associated with having a number of gene mutation. One study based TCGA data,
(TCGA, 2012) showed mutations in number of genes are associated with many subtypes of
breast cancer. Another study (Giovanni et al., 2015), profiled both IDC and ILC using TCGA
data and found association between mutations in a number of genes and development of IDC
and ILC. Although there was attempt to include both clinical factors and genetic profiling
(Haoming et al., 2015), in identifying the risk of developing breast cancer, it is not clear how
genetic factors affect the relative risk of developing breast cancer and patients’ survival in
the presence of clinical and other relevant factors. In this paper, we consider the joint effect
of a number of important genes and other relevant factors to study the survival pattern of
breast cancer patients using data from The Cancer Genome Atlas (TCGA) project.
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2 Data and Variables

2.1 Data Source

The RNA-Seq data for this study has been retrieved from the Open Access data tier of TCGA
genome data analysis center (http://gdac.broadinstitute.org/) which is an interactive data
system for researchers to search, download, upload, and analyze cancer genomic data, in-
cluding breast cancer data (TCGA, 2012). Since we wanted to explore a particular point
of interest, survival analysis of breast cancer on clinical and genetic factors, we retrieved
the clinical data (Breast Invasive Carcinoma TCGA, Provisional) from cBioPortal which is an
exploratory analysis tool for exploring large-scale cancer genomic data sets.

2.2 The Breast Cancer Dataset

The clinical data contains 1105 cases and 118 variables whereas the RNA-Seq data with
gene expression information has 1100 cases with 17675 gene information. We considered
9 clinical factors and 25 genes (Antoniou and Easton, 2006; Easton, 1999), among all the
available information, which were found to be stated as significant factors (Cerami et al.,
2012; Yang et al., 2007) in the breast cancer literature. A single outcome, i.e breast cancer
specific survival is investigated for the survival analysis. Since we need the same number
of patients in both clinical and RNA-Seq data, we matched the patient ID in both data and
found 1100 patients that fulfill the matching criterion. Two hundred and ninety one patient
records with unknown clinical information have been excluded from downstream analysis
for the remaining 809 cases.

Among patient information gender, menopause status (at time of diagnosis), race, tumor
status (at time of last contact or death), vital status (at date of last contact) are chosen
(Helmrich et al., 1983). Histologic subtype and age at initial diagnosis are selected from
pathologic information and stage variable comes from (AJCC) staging manual (Giuliano
et al., 2017). In order to create the survival object (response variable), information were
collected on number of days from the date of initial pathologic diagnosis to date of death
and date of last contact for patients who were initially diagnosed as breast cancer carrier
between year 1988 and 2013.

We identified normal and tumor samples by using the TCGA barcode. The two digits at
position 14-15 of the barcode indicates the sample type. Tumor type ranges from 01-09,
normal type from 10-19, and control samples from 20-29. In gene expression analysis, a
common approach to differentiate a gene’s expression between two conditions is to use a
threshold value for what is called fold change(FC) (Tutorial, 2015). Simply considering FC
as a measure of differential expression may not be valid in this case. Thus we scale the gene
expression value by a standardized transformation and calculate z-score for each expression
value.

For gene expression data, the standard rule is to compute the relative expression of an
individual gene and tumor to the gene’s expression distribution in a reference population.
The reference population is either all tumors that are diploid (containing two complete sets
of chromosomes, one from each parent) for the gene in question or when available, normal
adjacent tissue. The returned value indicates the number of standard deviations away from
the mean of expression in the reference population (z-score). This measure is useful to
determine whether a gene is up- or down-regulated relative to the normal samples or all
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other tumor samples. In this study, we considered those genes with z > ±1.96 (roughly
p = 0.05 or 2 SD away) to be differentially expressed. To obtain z-scores for the RNA-Seq
data we use following formula:

z =
Expression for gene X in tumor Y −Mean expression for gene X in normal

Standard deviation of expression for gene X in normal

We used the z-score values to define which samples are altered and which do not change.
The numbers for altered and not altered refer to the number of samples with gene expression
higher/lower than a specific threshold such as z-score of 2. That is we can define altered
versus not altered as follows:

z ≥ 2⇒ altered

z < 2⇒ not altered

The dependent variable for this study is overall survival time after the diseases has been ini-
tially diagnosed. To perform survival analysis we need the following three main constructs:

• time: the time till an event happens
• status: indicates which patients have to be kept for the analysis
• event: indicates which patients have death after initial pathological diagnosis (IPD).

In addition to these three constructs, we also define a censoring indicator as follows:

Censoring indicator =

{
1; if a patient is alive at time of survey
0; otherwise.

The time variable is defined as the number of days to death after IPD and number of
days to last contact after IPD (for censored cased).

For our analysis data, the median survival time of the breast cancer patients is 3472 days
after IPD with 87.38% censoring in the data.

3 Methods

To determine the moderated effect of important clinical factors of breast cancer on patient’s
survival with information on gene expression for a number of significant genes, we fit the
standard Cox Proportional Hazards (Cox, 1972) model for univariate analysis and the penal-
ized Cox PH model (Heinze and Schemper, 2001) for combined analysis. Important clinical
and demographic factors associated to the disease are selected consulting the literature on
breast cancer. We also search the literature to narrow down a short list of genes found so
far to be linked to Invasive Ductal Carcinoma (IDC). Twenty five genes that are found to be
directly associated with IDC are selected. For each gene its expression value is converted to
z-score and based on a threshold value, as discussed in section 2, each gene is labeled as
altered versus not altered. To further narrow down the number of genes that will be added
to the combined Cox PH model, we considered both univariate and multivariate analysis for
each gene alone, and with rest of the genes excluding the gene under investigation respec-
tively. Survival functions for the altered and not altered groups are compared under both
scenarios. If the survival functions are statistically significantly different among the altered
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versus not altered groups for a particular gene, then it is added to the combined model for
further analysis. An ultra-brief overview of survival analysis is presented as follows.

A subject or patient’s survival status can be estimated by calculating what is called the
Product-limit (PL) estimator (Kaplan and Meier, 1958) of the survival function defined as
ˆS(tj) =

∏j
i=1

(
1− dj

nj

)
. Here ˆS(tj) is the estimated survival function at time tj , dj is the

number of events occurred at tj , and nj is the number of subjects available at tj . After
estimating survival functions, we can compare these among two or more groups using Log-
rank test (Mantel, 1966). For instance, we implemented Log-rank test to identify the most
important genes whose status of being altered or not are associated significantly with patient
survival. The null hypothesis for this test can be formulated as follows:

H0 : Survival function for patients with altered gene is the

same as that for patients with non-altered gene

HA : Survival functions are not equal for these two groups

Symbolically we can write,

H0 : Saltered(t) = Snot altered(t)

HA : Saltered(t) 6= Snot altered(t)

If the survival function is significantly different among altered and not altered groups for
a specific gene, we select and include it to the combined Cox PH model. This approach is
useful in learning the effect of this specific gene under investigation on patient’s survival in
the presence of clinical factor and other selected genes.

The semi-parametric Cox PH model (Cox, 1972) is commonly used regression model for
time-to-event response variable. Cox PH model fits the hazard of having the event under
consideration (IDC, in this case), using an unspecified baseline hazard function and an
exponentiated form of a set of covariates. Mathematically the model can be written as
follows:

h(t|xi) = h0(t) exp
(
βTxi

)
,

where h(t|x) is the conditional hazard function for a subject i with covariate information
given as the vector xi, h0(t) is the baseline hazard function that is independent of covariate
information, and β is the vector of regression coefficients corresponding to the covariates.

In order to determine if a particular predictor has any effect on patient’s survival, we
calculate what is called the hazard ratio (HR) based on the estimated regression coefficients
from the fitted Cox PH model. The hazard ratio for a covariate xr can be expressed by
the following simple formula eβr . Thus hazard ratio for any covariate can be obtained by
exponentiating the corresponding regression coefficient.

4 Results and Discussions

As mentioned in section 2, we considered nine clinical factors including age and twenty five
genes in our analysis. Except age, rest of the clinical factors are categorical. Patient’s age
distribution is shown in Figure 1 below. We see that the mean age of the patients at the time
of diagnosis is approximately 58 (58.34) years with a minimum of 26 and maximum of 90
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Diagnosis Age
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Figure 1: Age of the patients at the time of diagnosis.

years. Note that, there are 2 missing observations in age variable which is indicated by NA
in the graph.

We present the descriptive summary statistics of the other clinical predictors in Table 1.

Table 1: Descriptive statistics of clinical predictors.

Characteristics Category Freq %
Race White 759 69.00

Black/African American 183 16.64
Other1 62 5.64

Prior History Yes 67 6.09
No 1031 93.73

Neoplasm Status With Tumor 95 8.64
Tumor Free 879 79.91

Stage Stage I 90 8.18
Stage IA 85 7.73
Stage IB 6 0.55
Stage II 6 0.55
Stage IIA 358 32.55
Stage IIB 260 23.64
Stage III 2 0.18
Stage IIIA 155 14.09
Stage IIIB 27 2.45
Stage IIIC 67 6.09
Stage IV 20 1.82
Stage X 12 1.09

Menopause Status2 Premenopausal 230 20.91
Perimenopausal 40 3.64
Postmenopausal 704 64.00
Indeterminate 34 3.09

1Other: Asian, American Indian or Alaska native.
2Premenopausal:<6 months since last menstrual period (LMP) and no prior bilateral oophorectomy and not on

estrogen replacement.
Perimenopausal: 6-12 months since last menstrual period.
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From Table 1, we see that the stage variable has the highest number (12) of categories
and it is found that 32.55% patients belong to stage IIA, while 23.64% and 14.09% patients
are from stage IIB and IIIA respectively. The percentages for other categories are relatively
small than these three categories.

Proportion of white patients is the highest with 69%, 16.64% of the patients are Black
or African American, and only 5.64% patients are Asian and American Indian or Alaska
native. There are four categories for menopause status. In addition, 64% patients have post-
menopausal, 20.91% of the patients have premenopausal status, 3.64% is perimenopausal,
and 3.09% of the patients is indeterminate. In the original dataset, there were eight cate-
gories for histology type. Among these categories, 71.55% patients have Infiltrating Ductal
Carcinoma, 18.45% have Infiltrating Lobular Carcinoma and only 10% of the patients have
other types of histology.

4.1 Survival Pattern for Gene Expression Data

Using product limit (PL) estimator, we obtained survival curves for each of the twenty-five
genes. The survival curves compare survival patterns between two groups: altered and non-
altered. Here we included the results from the genes those have significant difference in
their survival pattern. The p-value indicates the significant role of the gene in differential
survival pattern when its expression level is considered as altered versus not altered.

Note that, in Figure 2, the red line in the graphs indicates non altered and the black
line indicates for altered group. We see that patients who have altered MLH1, FOXA1 and
RAD51C genes are less likely to survive compared to the non-altered groups among these
genes. However, p-value for RAD50 gene indicates that patients with alteration of this gene
have a better survival than non-altered group.

4.2 Fitting Penalized Cox PH Model

To select the most significant genes for the final analysis we used penalized Cox PH model
(Heinze and Schemper, 2001) by penalizing all twenty-five genes keeping the clinical factors
unpenalized. We considered a range of values for the shrinkage or penalty parameter λ from
3 to 20. Based on the non zero regression coefficients, we selected 13 genes from the RNA-
Seq data for the final model. Table 2 and Table 3 show the estimated coefficients (β),
corresponding hazard ratios (HR), z, and p-values from these analyses considering λ = 20
and λ = 15 respectively.

While the shrinkage parameter value λ is held at a higher value of 20, we see from
Table 2 that the coefficients for genes BRCA1, GATA3, PIK3CA, RAD50, and RAD51C were
not shrunk toward zero. This implies that these five genes are important while controlling
for the clinical factors, although only RAD50 is statistically significant at the 10% level of
significance.

Table 3 presents the results when we reduce the shrinkage parameter value λ from 20
to 15. We see from that the coefficients for four additional genes BARD1, MLH1, MSH2,
and PTEN were not shrunk toward zero. This implies that these nine genes are important
while controlling for the clinical factors, again only RAD50 is statistically significant at the
10% level of significance. In addition it is to be noted that BRCA1, GATA3, PIK3CA, RAD50,

Postmenopausal: Prior bilateral ovariectomy or > 12 months since LMP with no prior hysterectomy.
Indeterminate: Unknown.
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Figure 2: Survival pattern of altered and non-altered groups of MLH1, FOXA1, RAD50 and
RAD51C.
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Table 2: Clinical and genetic factors from combined penalized analysis with penalty param-
eter =20.

Variables β HR z p

Age 0.6077 1.05 4.02 0.0391
White -1.67 2.34 -1.78 0.075
Other 1.83 1.64 0.65 0.519

Peri-menopausal -1.07 2.75 -0.27 0.490
Post-menopausal -1.03 2.89 -0.69 0.2356
Indeterminate -1.23 1.07 -2.27 0.023

Prior History (Yes) 3.37 2.50 2.16 0.030
Neoplasm Status (With Tumor) 1.95 7.01 7.88 9.79e−07

StageI -3.05 1.60 -1.82 0.069
Stage IA -1.48 0.84 -1.94 0.053
Stage IB -4.43 0.0027 0.00 0.997
Stage II -4.16 0.0020 -0.00 0.997
Stage IIA -0.95 2.84 -0.77 0.444
Stage IIB -3.27 1.51 -2.50 0.012
Stage IIIB -0.65 3.09 -0.33 0.744
Stage IIIC 0.86 1.26 0.50 0.620
Stage IV -0.51 3.54 -0.08 0.938
Stage X 1.02 2.76 1.45 0.146

BRCA1 (Not Altered) -0.86 3.45 -0.27 0.786
GATA3 (Not Altered) -0.32 3.59 -0.07 0.941
PIK3CA (Not Altered) 1.21 1.09 0.38 0.700
RAD50 (Not Altered) 2.01 1.73 1.80 0.072
RAD51C (Not Altered) -0.91 2.87 -1.06 0.291

and RAD51C are retained by both penalized models. In our final combined analysis, we
considered the genes that are retained with λ = 10 in order to keep higher number of
influential genes. Finally we identified important genes for breast cancer controlling for the
clinical factors using the regular Cox model.

4.3 Modeling Hazard on the Combined Model with both Clinical and
RNA-Seq Data

We included seven out of nine clinical factors identified from the separate analysis on clinical
factors and thirteen out of twenty five genes identified using penalized Cox model to our
combined analysis.

Estimated regression coefficients are presented in Table 4 along with hazard ratios (HR),
z-values, and corresponding p-values. Here, n= 808, number of events(deaths)= 102 after
deleting 292 observations due to missingness.
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Table 3: Clinical and genetic factors from combined penalized analysis with penalty param-
eter =15.

Variables β HR z p

Age 0.67 1.05 4.30 0.0115
White -1.66 2.34 -1.72 0.085
Other 1.93 1.69 0.68 0.497

Peri-menopausal -0.90 2.88 -0.23 0.490
Post-menopausal -1.55 2.41 -1.02 0.306
Indeterminate -1.39 0.92 -2.47 0.014

Prior History (Yes) 3.54 2.62 2.26 0.024
Neoplasm Status (With Tumor) 1.99 7.35 7.62 2.4e−14

StageI -3.06 1.60 -1.84 0.066
Stage IA -1.53 0.80 -1.99 0.047
Stage IB -4.24 0.0016 0.00 0.996
Stage II -3.89 0.0055 -0.01 0.995
Stage IIA -1.42 2.50 -1.13 0.257
Stage IIB -1.06 1.28 -2.88 0.004
Stage IIIB -0.56 3.16 -0.28 0.777
Stage IIIC 0.49 1.14 0.28 0.782
Stage IV -1.42 2.50 -0.75 0.453
Stage X 3.20 2.39 1.20 0.230

BRCA1 (Not Altered) -0.60 3.12 -0.67 0.505
BARD1 (Not Altered) 1.58 1.54 1.23 0.220
GATA3 (Not Altered) -0.15 3.64 -0.04 0.972
MLH1 (Not Altered) -0.73 3.02 -0.87 0.386
MSH2 (Not Altered) 1.15 1.09 0.27 0.786
PTEN (Not Altered) -1.32 2.57 -1.39 0.164
PIK3CA (Not Altered) 1.30 1.10 0.41 0.682
RAD50 (Not Altered) 2.31 1.87 2.02 0.044
RAD51C (Not Altered) -0.96 2.84 -1.11 0.265

Note that, Black or African American group has been used as the reference category
for race variable. Similarly, the references for menopause status, stage, prior history, and
neoplasm status are pre-menopausal group, stage IIIA, patients with prior occurrence of
breast cancer, and with tumor respectively. Also, the altered group has been considered
as the reference for all the selected genes. From Table 4, we see that there is 1.05 times
increase in the expected hazard relative to a one year increase in age. The patients who
belong to White race category have 2.36 times less failure rate compared to the African
Americans or Black patients and have significant effect on death from breast cancer. Others
have 1.56 times more failure rate than African Americans but does not have significant effect
on overall survival status.

In the case of prior history, we can see that patients who have history of prior disease
occurrences are 2.74 times more likely to die compared to a patient with no prior history.
This factor shows significant effect on death from breast cancer.
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Table 4: Clinical and genetic factors from the combined analysis.
Variables β HR z p

Age 0.71 1.05 4.50 0.0166
White -1.63 2.36 -1.64 0.1008
Other 1.64 1.56 0.57 0.5658

Peri-menopausal -0.85 2.92 -0.22 0.8262
Post-menopausal -1.82 2.24 -1.19 0.2356
Indeterminate -1.30 1.00 -2.30 0.0213

Prior History (Yes) 1.01 2.74 2.36 0.0185
Neoplasm Status (With Tumor) 2.08 7.97 7.94 6.12e−07

StageI -3.33 1.49 -1.99 0.0463

Stage IA -1.69 0.68 -2.19 0.0284
Stage IB -4.27 1.46e−07 0.00 0.9964
Stage II -3.89 6.04e−07 -0.01 0.9953
Stage IIA -1.82 2.24 -1.41 0.1574
Stage IIB -1.21 1.10 -3.22 0.0013
Stage IIIB -0.16 3.64 -0.02 0.9831
Stage IIIC 0.42 1.12 0.24 0.8075
Stage IV -2.41 1.91 -1.25 0.2128
Stage X 2.35 1.89 0.88 0.3785

BRCA1 (Not Altered) -0.71 3.04 -0.76 0.4479
BARD1 (Not Altered) 0.58 1.17 0.44 0.6593
GATA3 (Not Altered) -0.83 3.46 -0.19 0.8506
MLH1 (Not Altered) -0.95 2.84 -1.10 0.2703
MSH2 (Not Altered) 0.41 1.03 0.10 0.9229
MRE11A (Not Altered) 0.59 1.17 0.45 0.6512
MAP3K1 (Not Altered) 1.11 3.02 1.86 0.0634
NBN (Not Altered) 0.68 1.20 0.69 0.4922
PTEN (Not Altered) -1.73 2.30 -1.76 0.0783
PIK3CA (Not Altered) 0.66 1.05 0.18 0.8597
RUNX1 (Not Altered) -0.43 3.56 -0.04 0.9670
RAD50 (Not Altered) 2.59 2.02 2.21 0.0268
RAD51C (Not Altered) -0.94 2.85 -1.08 0.2803

Tumor status is a vital factor for death from any cancer. From Table 4, we can see
that patients with tumor have 7.97 times more failure rate compared to a patient with no
neoplasm tumor and is highly significant on overall survival.

Stage level plays an important role on death from breast cancer. From the Table 4, it
can be seen that patients who belong to Stage I and IIB have respectively 1.49 and 1.10
times less failure rate compared to a patient from Stage IIIA and these two stage levels have
significant effect on death. Moreover, patients who belong to stage IA are 0.68 times less
likely to die compared to the patient at stage IIIA and is statistically significant.

After controlling for the clinical factors, only MAP3K1, PTEN, and RAD50 show signifi-
cant influence on the survival of breast cancer. The patients with non-altered MAP3K1 and
RAD50 genes have respectively 3.02 and 2.02 times more rates of death compared to the
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altered carriers. Whereas, patients with non-altered PTEN have 2.30 times less rate of death
than the altered carriers.

5 Conclusion

In this study, a survival analysis of 1100 breast cancer cases revealed that a number of gene
mutations independently predicts breast cancer survival, whereas some of them were not
significantly associated with overall higher survival.

From product limit (also known as Kaplan Meier) analysis, we found significant differ-
ence in survival times between altered and non-altered cases in four genes namely, FOXA1,
MLH1, RAD50, and RAD51C. After controlling for clinical factors, three RAD50, PTEN, and
MAP3K1 mutated patients had higher relative risk of failure from breast cancer.

Furthermore, using combined data for both clinical variables and gene expression from
the same 1100 breast cancer cases, we identified the most significant factors to predict over-
all survival. Similar to the results of univariate analysis from Kaplan-Meier estimates, RAD50
showed significant association with survival from breast cancer. In addition, MAP3K1 and
PTEN genes had been identified as significant predictors for survival where the altered car-
riers of PTEN had worse survival or higher risk of death than the non-altered cases after
controlling for the clinical variables. The patients with altered MAP3K1 had better sur-
vival than the non-altered carriers. Our results on the influentials genes for development
of breast cancer after controlling for clinical factors conform with findings from previous
studies (TCGA, 2012; Giovanni et al., 2015).

While we conducted the analysis on clinical variables, controlling for the genetic factors,
patients with increasing age, pre-menopausal status, prior history of cancer and neoplasm
status with tumor have significantly higher risk of failure (death) from breast cancer. Also,
patients who belong to White race group have lower rate of death compared to Black or
African American. Patients at stage I, IA and IIB have significantly better survival than
patients from at IIIA.

Although, to our knowledge, the patient cohort (1105 cases) includes nearly all im-
portant factors (both genomic and clinical) combined, it is possible that some clinical and
genetics factors are not recorded and our findings should be further validated with inte-
grated platforms. Another shortcoming of this research is that we limited to twenty five
genes based on the literature search on breast cancer. An objective gene selection from all
available genes in the database is left as future research.

Missingness is a major drawback in biomedical studies. In particular, often times missing
data fail to observe and include all important information about the patients. We completely
ignored the missingness of the covariates and excluded from all downstream analysis. Tak-
ing into account the covariates for which information was incomplete might give us more
accurate results.

The results should be interpreted with caution as we have not cross-validated the findings
across other platforms, such as genomic DNA copy number arrays, DNA methylation, or
protein arrays (TCGA, 2012). Nevertheless, the discovery of combined effect of important
clinical and genomic predictors on patient survival in breast cancer may have important
implications in identifying influential genes controlling for clinical factors and vice versa.
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